Loading...

Blog Data Science : 130 artículos encontrados

¿En qué consiste el Text-Mining?

Ya nos ha quedado claro que a día de hoy cada vez son más importantes los datos. Empresas, personas, ya no somos nada sin información. Por eso, el Data Science cada vez está teniendo más importancia en el mercado. Pero, vamos a dar un paso más y vamos a aprender algo más concreto. Investiguemos en qué consiste el Text-mining si queremos estudiar un master en análisis de datos para consultoría en nlp.

Salidas laborales tras estudiar un master en Data Science

Actualmente, Data Science está cogiendo mucha fuerza de entre los distintos campos de la información. Consiste en extraer conocimiento a partir de los datos para procesarlo y poder enfocarlo a distintos campos como la estadística, minería de datos, machine learning y la analítica predictiva.

En definitiva, el Data Science es un campo que comprende absolutamente todo lo relacionado con la limpieza de datos, preparación y análisis. Y se aplica a prácticamente cualquier sector profesional.

El dato: la gasolina para el motor del Data Science

El Data Science es un campo que involucra métodos científicos, procesos y sistemas para extraer conocimiento o un mejor entendimiento de datos en sus diferentes formas. Podemos decir, por tanto, que es una continuación de algunos otros campos del análisis de datos como son la estadística, data mining, machine learning y la analítica predictiva.

El trabajo de tus sueños en 2018 tras realizar un Máster en Data Science

2018 está a la vuelta de la esquina y, con él, una oportunidad de oro para formarte y poder optar al puesto laboral que llevas toda la vida esperando. Si, por el contrario, no tienes nada claro qué estudiar por desconocer las diferentes salidas profesionales, has llegado al lugar indicado.

El Máster en Data Science se ofrece como respuesta a la necesidad cada vez mayor de profesionales que sean capaces de extraer conocimiento útil de las fuentes de información que apoye los objetivos del negocio. El Máster se dirige tanto a profesionales que tienen la ambición de trabajar como Data Scientist (o Científicos de datos) como a aquellos que quieran dar un giro a su carrera profesional hacia la analítica de datos.

Los Data Scientist se encuentran entre los perfiles más demandados del momento. A la finalización del Máster en Data Science podrás comenzar tu carrera profesional como Data Scientist, Business Analyst, Business Intelligence, Chief Data Officer, Marketing Manager, Social Media Strategist, etc.

Una pequeña lista con algunas de sus salidas profesionales:

Data Scientist.

Un Data Scientist es un experto en Data Science (Ciencia de datos), su trabajo consiste en extraer conocimiento a partir de los datos para poder responder a las preguntas que se le formulan. Es la evolución de lo que hasta ahora se conocía como Analista de datos, pero a diferencia de éste que sólo se dedicaba a analizar fuentes de datos de una única fuente, el Data Scientist debe explorar y analizar datos de múltiples fuentes, a menudo inmensas (conocidas como Big Data), y que pueden tener formatos muy diferentes.

Business Analyst.

El analista de negocio o business analyst es la persona que posee conocimientos técnicos sobre la construcción de sistemas informáticos y al mismo tiempo comprende y está al corriente de las necesidades del usuario que requiere de esos sistemas para realizar su trabajo. Su misión es la de ser el interlocutor entre el usuario y el departamento de sistemas.

Business Intelligence.

Se denomina inteligencia empresarial, inteligencia de negocios o BI (del inglés business intelligence), al conjunto de estrategias, aplicaciones, datos, productos, tecnologías y arquitectura técnicas, los cuales están enfocados a la administración y creación de conocimiento sobre el medio, a través del análisis de los datos existentes en una organización o empresa. Las herramientas de inteligencia se basan en la utilización de un sistema de información de inteligencia que se forma con distintos datos extraídos de la producción, con información relacionada con la empresa o sus ámbitos, y con datos económicos.

Chief Data Officer.

La función del chief data officer combina rendición de cuentas y responsabilidad en lo que se refiere a protección y privacidad de la información, gobierno de la información, calidad de datos y gestión del ciclo de vida de los datos, junto con la explotación de los activos de datos para crear valor de negocio. Comparándolo con el CIO, el chief data officer desempeña una función más relacionada con riesgos, cumplimientos, gestión de políticas y funciones de negocio. Se trata de un rol que impulsa estrategias de información y análisis con propósito de negocio. El CIO debería estar involucrado en el diseño de esta función, el cual, además podría incluso reportarle a él, o bien funcionar en una posición paralela, reportando al COO o al CFO. En esencia, el chief data officer de una organización hace las veces de pegamento entre la estrategia de datos y las métricas.

Si te han llamado la atención estas opciones de futuro no dudes en obtener toda la información para no conformarte con una decisión parcial en semejante punto de inflexión. En nuestra página obtén toda la información necesaria así como un contacto sin compromiso. ¡Es el momento!

¿Por qué es útil hacer un Máster en Data Science en las mejores Universidades?

¿Hasta qué punto influye en nuestro futuro el centro en el que nos formamos? ¿Qué aspectos se ven más comprometidos? ¿Cuánto podemos beneficiarnos o perjudicarnos?

El Máster en Data Science se ofrece como respuesta a la necesidad cada vez mayor de profesionales que sean capaces de extraer conocimiento útil de las fuentes de información que apoye los objetivos del negocio.  

Rigor académico

Probablemente ya has adivinado cómo funcionan las cribas en la vida. Lo bueno conlleva un sacrificio, un tiempo: una inversión. Por ello, lo bueno se valora y, como no, se paga. El rigor académico no es más que un seguro que te garantiza que estás en las mejores manos posibles.

Un elenco de profesionales que han pisado por allá por donde nosotros pretendemos pisar algún día. Los mentores adecuados suelen conllevar a los objetivos adecuados y, por eso, es un factor realmente importante a la hora de elegir una u otra universidad.

Todo lo importante requiere una inversión sea de dinero, tiempo, esfuerzo… ¿Por qué no empezar apostando fuerte por nosotros mismos de la mano de los mejores?

Red de Contactos

Vivimos en un mundo conectado en el que, lo más importante, eres tú; nosotros. Todos. Las personas, sí, las mismas. Por eso la red de contactos es crucial a la hora de construir puentes invisibles pero sólidos entre las futuras empresas líderes del sector. Puentes necesarios con el paso del tiempo y que, de forjarlos bajo el cobijo del “rigor académico”, nos aseguramos una enorme funcionalidad de nuestra agenda.

Trabajar con los mejores, conocerles, saber sus inquietudes y sus debilidades. Toda esa información nos será mucho más que útil y, además, ganaremos muchos amigos por el camino.

¿Quién sabe por dónde te llevará el destino y si, quizá, terminas trabajando con alguna de esas personas años después? No desperdicies una buena oportunidad por falta de contactos: ¡búscalos! La competición sana nos lleva a aprender siempre: conoce a tus competidores y date a conocer ante ellos.

Un buen claustro docente

El claustro docente refleja la vinculación entre empresa y universidad, integrado por profesionales procedentes de ambos ámbitos capaces de guiarnos por el mejor camino posible. Un buen equipo docente es clave para ahorrar tiempo y esfuerzo dando palos de ciego. ¿Cómo saber qué docente necesitamos?

Toda criba es un difícil obstáculo que, de ser superado, nos destaca de una masa mayor y nos prepara para la vida. Un claustro selecto significa una oportunidad extra para aprender y alcanzar el éxito. Por eso el rigor académico, la red de contactos y un claustro docente selecto son cualidades propias de las mejores universidades pues precisamente por eso lo son.

No dudes en conseguir más información acerca del Máster en Data Science. Encontrarás un claustro docente capacitado y dispuesto a ayudarte en todo momento, una enorme red de contactos que te proporcionará aliados en tus primeros pasos y unos sólidos cimientos sobre los que forjar tu leyenda y, sin duda, el rigor académico está más que asegurado.

¡Da el paso e invierte en ti mismo!

5 Factores para elegir el mejor Máster en Data Science

Con el auge y la importancia y necesidad de estudiar un Máster para especializarse y obtener conocimientos y habilidades específicas que nos abran el camino al mundo empresarial, la competitividad hace de esta una forma perfecta para despuntar. Por ello es primordial encontrar el mejor Máster y el mejor centro de formación.

¿Qué factores nos pueden guiar a la hora de decidir el mejor Máster en Data Science? En este artículo os dejamos 5 Factores para elegir el mejor Máster en Data Science.

  1. Elije el mejor Centro de Formación en Data Science.

El centro es realmente importante pues de él parten el resto de factores que intervienen en la decisión. Es la clave y el centro del meollo. Por ello es importante que despejes pronto esta duda y, si ya sabes que lo que quieres es realizar el Máster en Data Science en la Universidad de Alcalá, no dudes en echar un vistazo a este enlace donde podrás conocer al profesorado, el programa y ver los requisitos de admisión. ¿A qué estás esperando?

  1. Los Objetivos.

Es muy importante saber hacia dónde vamos. Por eso, siempre que vayas a afrontar una decisión importante en la vida, debes tener muy claro cuál es el objetivo que quieres alcanzar. El tiempo es el valor más preciado que invertirás en toda tu vida y gestionarlo no es tarea fácil.

Enfrentarse a un máster en Data Science significa trabajar para conseguir la comprensión y aplicación de teoría financiera, comprender y saber usar las herramientas de gestión o potenciar el desempeño directivo de los participantes. Mejorar capacidad de toma de decisiones en cualquier ámbito. Una respuesta a las necesidades y exigencias que demanda el mercado, en busca de profesionales con talento como tú.

  1. El Programa (y los Módulos).

Si los objetivos son importantes, el programa y sus módulos serán lo que nos ofrecerá la posibilidad de establecer el tiempo. Conocer el programa de un máster es importante mucho antes siquiera de comenzar el mismo: nos servirá para vaticinar con mayor o menor acierto los tiempos.

Módulos (como Economía y Sistema Financiero Internacional, Métodos Computacionales, Data Science Corporativas, Mercados Financieros, Gestión de Cartera, Regulación Financiera…) son las herramientas que nos llevarán a conseguir los objetivos arriba mencionadas. En ellas tenemos la capacidad de expandir nuestros conocimientos y especializarnos para resultar eficientes en todo tipo de ámbitos.

  1. El Claustro Docente.

Portadores de experiencia y conocimientos, son las llaves que abrirán cada una de las herramientas arriba descritas. Capaces de potenciar la teoría ofreciendo experiencia en el sector y otorgando al recién llegado la seguridad de saber que no está remando solo.

El claustro de la UAH refleja la vinculación entre empresa y universidad, estando integrado por profesionales procedentes de ambos ámbitos. Por un lado profesionales del mundo financiero y bancario que ocupan puestos directivos en las principales empresas del sector, tanto nacionales como internacionales, y por otro lado expertos docentes de las principales universidades del país.

  1. Motivación y Disciplina.

El camino de las Data Science requiere profesionalidad y responsabilidad. La motivación es fundamental para recorrer un camino en el que nuestro mayor activo somos nosotros mismos. Se trata del comienzo de un camino que durará toda la vida y del que podremos emerger y alcanzar el lugar que deseamos en el mundo.

No dejes que los problemas a corto plazo puedan nublar tu visión a largo plazo. Trabaja por conseguir paliar los obstáculos que vayan apareciendo en el camino y tarde o temprano llegarás al lugar indicado. ¡No desfallezcas!

3 Consejos para hacer el mejor Máster en Data Science

En los últimos años se ha ido incrementando la importancia y la necesidad de estudiar un Máster para especializarse y obtener unos conocimientos y habilidades concretas que nos abran el camino al mundo empresarial. La competitividad y el exceso de gente con formación hacen que esta sea una buena forma de destacar y liderar el mercado, por ello es primordial encontrar el mejor Máster y ser aceptado para entrar en él.

Pero… ¿hay algo que podamos hacer para mejorar nuestras posibilidades a la hora de aplicar al Máster deseado? En este artículo os dejamos 3 Consejos para hacer el Mejor Máster en Data Science. ¡Esperamos que os ayuden!

  1. Destaca tus fortalezas.

Eche un vistazo al perfil de los estudiantes de las clases anteriores que han comenzado el programa que se está aplicando y luego toma una evaluación honesta de tus propias características y asegúrate de hacer hincapié en los que se alinean con los estudiantes anteriores.

Si tu experiencia excede el promedio de otros aceptados en el pasado necesitas destacar tu experiencia y describir cómo beneficiará el salón de clases. Obtén algunos buenos consejos sobre cómo ser aceptado para tu programa deseado en Data Science.

Si el programa hace hincapié en la experiencia internacional y has crecido en otro país, estudiaste en otro país o haces un montón de negocios en otro país es importante que resaltes estos atributos ya que eso ayuda a separarte de otros candidatos menos aptos.

  1. Involúcrate e identifica tus puntos flacos.

No es importante solo conocer nuestras fortalezas: nuestros puntos flacos están ahí no solo para ser escondidos. Procura medirte bien a ti mismo y reconocer en qué estás mejor y peor dotado. Cuando consigas identificar aquello en lo que eres peor, trata de encontrar la forma de pulir esa área sin olvidar las otras.

Nunca dejes tus puntos fuertes para compensar los débiles pero, al mismo tiempo, nunca descuides del todo tus puntos flacos solo por mejorar en lo que ya eres bueno. Trata de medir y crecer en todo para ser un candidato más equilibrado.

  1. ¡Empezar es la clave!

Parece sencillo pero es lo más complicado de todo. Es una decisión realmente importante pero, no por ello, debemos demorar mucho el proceso a no ser que tengamos buenas razones para hacerlo.

Una vez que inicies el proceso de solicitud, te sentirás en conexión con la universidad y será mucho menos probable que pongas excusas sobre por qué ahora no puede ser el momento adecuado para iniciar un programa de posgrado.

Acepta el hecho de que nunca habrá un momento perfecto para regresar a la escuela y comenzar la aplicación para tu programa e invertir en tu éxito profesional.

Una Maestría en Data Science tiene el potencial para cambiar tu vida. Los empleadores valoran a las personas que poseen avanzadas habilidades financieras que se pueden aprender por asistir a un grado de maestría de Data Science. Tener un dominio de las Data Science te hará mucho más valioso en el lugar de trabajo y te dará las habilidades necesarias para elevar su carrera.

Desde la Universidad de Alcalá te ayudamos en el proceso de toma de decisión del máster que más se adapte a tus intereses y ponemos a tu disposición todo el asesoramiento profesional necesario para responder a cualquier duda que puedas tener. Si ya sabes que lo que quieres es realizar el Máster en Data Science echa un vistazo a este enlace donde podrás ir viendo nuestro programa, conocer al profesorado y ver los requisitos de admisión. ¿A qué estás esperando?

 

¿Qué hacer tras finalizar tus estudios de Estadística?

Termina una época y da comienzo otra. Como todos los inicios son complicados y suelen ir precedidos de multitud de opciones y dudas, unas cuantas directrices podrán ser la mejor guía para orientar nuestros estudios de Estadística. ¿Qué hacer ahora?

Nos encontramos ante el umbral de una puerta que se nos ha abierto y muestra diferentes opciones. Lo primero es conocerlas todas.

  1. Buscar un puesto de trabajo adecuado a nuestra formación.

Hasta no hace mucho tiempo era la opción por excelencia y la más recurrida de las tres. Hablamos de la oportunidad de un sueldo fijo y pocas complicaciones pero, con la llegada de tormentas económicas, se convierte en una opción poco segura que nos deja en manos de factores externos a nosotros. ¿Qué clase de empresas pueden estar interesadas en tu perfil tras tus estudios en Estadística?

Las salidas profesionales no se limitan a sectores determinados:

Administraciones Públicas. Institutos oficiales de Estadística, proyección demográfica y tendencias sociales.

Ciencias de la vida. Sanidad, medicina, salud pública, industria farmacéutica, ensayos clínicos, medio ambiente, biología, agricultura, ciencias del mar.

Economía y finanzas. Ciencias actuariales, evaluación de riesgos y concesión de créditos, análisis bursátil, gestión de cartera de valores, investigación de mercados, análisis de la competencia.

Industria y servicios. Diseño de experimentos, calidad total, mejora de procesos y productos, logística, gestión de inventarios, planificación de la producción, gestión óptima de recursos.

Docencia e investigación. Enseñanza secundaria, docencia universitaria e investigación, formación continuada, investigación básica.

  1. Montar nuestra propia empresa.

Dar vida a semejante proyecto puede ser una tarea ardua y a largo plazo. Una opción inestable pero en la cual se basa nuestro sistema. La sociedad está formada por empresas y son estas las que crean riqueza e innovación allá donde están. Los puestos de trabajo dentro del estado sirven para gestionar en gran parte todos esos recursos pero, por supuesto, no crean nada. Una empresa puede ser un sueño o una pesadilla dependiendo de las posibilidades económicas, las necesidades o demanda de la misma, el grupo profesional en el que confiaremos y delegaremos, etc.

Por esto mismo debemos tener muy presente la posibilidad de formarnos de forma específica en aquellos ámbitos en los que pretendamos sumergirnos.

  1. Especializarse.

Una opción en alza y muy recomendable. Tras terminar tus estudios en Estadística tienes una gran opción a tu alcance: hacerte con un buen máster en Data Science. Te abrirá puertas hasta ahora cerradas y te otorgará unos conocimientos que te ayudarán a distanciar tu perfil del resto de competidores.

El Máster en Data Science es la respuesta a la necesidad de un nuevo profesional que es capaz de extraer conocimiento útil de la información en un contexto de proliferación de la producción de datos en las organizaciones y en la red en general.

Uno de cada dos empresarios toma como criba la especialización y eso reduce mucho las posibilidades de quienes no dispongan de un buen máster en el área en cuestión. Si quieres marcar la diferencia e invertir en tu futuro.

 

 

¿Estás preparado para realizar un Máster en Data Science?

La ciencia de datos es un campo interdisciplinario que involucra métodos científicos, procesos y sistemas para extraer conocimiento o un mejor entendimiento de datos en sus diferentes formas.

Perfil de los alumnos

Hablamos de profesionales con un perfil técnico (ingenierías TIC), cuantitativo (matemáticas, estadística) o de negocio (economía, empresa) que deseen afrontar el reto de Big Data como ventaja competitiva, especializándose en el análisis de datos.

El Master of Data Science es un título profesional para las personas que son apasionadas acerca de la extracción de conocimiento significativo de los datos para impulsar la toma de decisiones de negocios o la producción de la investigación. Desarrollará sus habilidades analíticas y técnicas para usar la ciencia de datos para guiar decisiones estratégicas en su área de experiencia. También ofrece la flexibilidad de adaptar el aprendizaje a sus intereses profesionales y personales.

  • Habilidades Sociales: Para poder comprender las respuestas sociales a nuestro producto y, por tanto, llegar a anticiparnos a las mismas. Comprender al cliente es básico para satisfacerle.
  • Habilidades de Negocio: son las que nos sirven de nexo entre nuestras habilidades sociales y las científicas. Nos llevan a determinar la línea entre lo que el cliente espera del producto y lo que el producto y las necesidades de producción del mismo.
  • Habilidades Científicas: aquellas que nos permiten, siguiendo el procedimiento científico, buscar respuestas a las preguntas planteadas.

Los datos son un activo vital para cualquier organización. Contiene conocimientos valiosos sobre áreas como el comportamiento del cliente, la inteligencia de mercado y el rendimiento operativo. Los científicos de datos construyen sistemas inteligentes para administrar, interpretar, comprender y derivar el conocimiento clave de grandes conjuntos de datos.

Si usted tiene una sólida formación matemática o cuantitativa, este grado desarrollará sus habilidades analíticas y técnicas en el uso de la ciencia de datos para guiar las decisiones estratégicas en su área de especialización.

Salidas profesionales de un Máster en Data Science

Estudiar Data Science es una apuesta segura ya que está considerado uno de los perfiles más buscados y las salidas profesionales son de lo más variadas. Como por ejemplo:

  • Data Scientist.
  • Arquitecto de datos de Business Intelligence.
  • Chief Data Officer (CDO).
  • Analista Digital.
  • Marketing Manager.
  • Social Media Strategist.
  • Business Analyst.

Si estás interesado en el mundo Data Science no dudes en visitar (ENLACE) para más información sin ningún compromiso. Como suele decirse: la información es poder. Además, la Universidad de Alcalá dispone de dos módulos de adaptación al máster sin ningún coste adicional después de realizar la Reserva de Plaza:

  • INTRODUCCIÓN A LA PROGRAMACIÓN: si nunca antes has programado o si ya hace tiempo que no lo haces y deseas refrescar conocimientos.
  • INTRODUCCIÓN A LA ESTADÍSTICA: para aquellos que deseen reforzar o recordar sus conocimientos de matemáticas y estadística estudiados anteriormente en la Carrera.

¿Has terminado la carrera y te interesa el mundo Data Science? ¿Has empezado a trabajar y buscas una posición más acorde a tus intereses? No desaproveches una oportunidad única en un sector en constante crecimiento.

Actitudes y Aptitudes de un Data Scientist

La mayoría de requisitos laborales o de formación son habilidades técnicas: matemáticas con énfasis en análisis estadístico, habilidades informáticas… pero un buen científico de datos también tiene un fuerte conjunto de habilidades puras. La ciencia de datos es más que matemática y tecnología: se trata de hacer que funcionen para las personas que lo necesitan.

Aquí os dejamos cinco habilidades puras que cada Data Scientist necesita:

  1. La capacidad de entender el negocio

Si el científico de datos está trabajando en el comercio minorista, seguros, energía o finanzas, el conocimiento del negocio y la industria son esenciales.

El análisis de datos sólo es útil en la medida en que refleje lo que la empresa necesita: eso si la empresa sabe lo que necesita. La habilidad para entender cuáles son las fortalezas y debilidades del negocio (así como la capacidad de enfocar hacia dónde se dirige) son habilidades críticas que el científico de datos debe dominar.

Un científico de datos necesita tener una comprensión firme de lo que hace que este negocio sea único, donde encaje dentro de la industria y lo que la empresa necesita para seguir siendo competitiva dentro del clima cambiante. Debe ser capaz de reconocer las tendencias en beneficio de su empresa.

  1. La capacidad de casar las necesidades del negocio con Know-How técnico

La capacidad de conectar personas y tecnología es crucial para un científico de datos.

El análisis de los datos no es nuevo pero la tecnología utilizada para analizar los datos está evolucionando rápidamente. Nuevas y mejores maneras de hacer las cosas están en el horizonte más cercano. Un científico de datos debe ser capaz de sacar su nariz de los datos el tiempo suficiente para evaluar las tecnologías disponibles para ellos. También deberían ser capaces de reconocer cuál de las tecnologías disponibles mejor se adapta al plan de negocios, ya sea la migración de datos a la nube, la actualización de las operaciones de mainframe o la adopción de nuevas plataformas.

  1. La capacidad de actuar como traductor entre trabajadores técnicos y los que no.

El científico de datos es literalmente el intermediario entre el departamento de TI y el lado de negocios de la empresa. Estos dos grupos de personas hablan diferentes idiomas. Un científico de datos con éxito será capaz de escuchar a los trabajadores de la producción y traducir esto en qué tecnologías puede satisfacer sus necesidades. Además, el científico de datos debe ser capaz de escuchar el lado del departamento de TI y ayudar a la parte de producción a entender cómo la tecnología puede ayudar, así como los límites que hay en las tecnologías ya disponibles.

  1. La capacidad de poner el análisis de datos en perspectiva.

A veces, los datos le dicen a la compañía lo que quiere oír. Otras veces, no. Un experto data scientist tendrá suficiente conocimiento diplomático (incluso político) para presentar los hechos tal como son y comunicar lo que ello significa de una manera que todo el mundo entienda. Idealmente, el científico de datos será capaz de influir en la empresa en la dirección correcta cuando los datos indiquen que las cosas necesitan un cambio.

  1. Un profundo sentido de la curiosidad más insaciable.

A diferencia de muchas otras carreras, la ciencia de los datos requiere innovación y creatividad para descubrir nuevas ideas. Los datos pueden decirnos mucho pero no necesariamente lo hacen de la forma esperada.

¿Estás pensando emprender este camino?

¿Por qué Estudiar un Máster en Data Science?

¿Ha notado el reciente aumento de los cursos de Data Science y puestos de trabajo? Echa un vistazo a tu alrededor y descubre por ti mismo cómo todo lo que nos rodea comienza a estar preparado para interactuar con nosotros, para ofrecernos información y para asimilar información de otros dispositivos.

Hoy en día, muchos dispositivos alrededor de nosotros están conectados a Internet. No se limita sólo al teléfono, reloj o tablet, incluso nuestro televisor o consola están actualmente conectados a Internet. ¡Una locura futurista no hace tanto tiempo!

Esto nos da la capacidad de analizar datos de estos dispositivos. Y ese proceso de recolección, análisis e interpretación de datos sería conocido como Data Science.

La Business Intelligence mira esos datos y habla de lo que ya sucedió. Es principalmente una función reactiva o sensible. Los científicos de datos toman esos datos y los usan para crear modelos que pueden usarse para predecir el futuro. Esto requiere habilidades avanzadas, herramientas que pueden manipular cantidades asombrosas de datos y a veces varios equipos que se ejecutan en clústeres o paralelos para proporcionar suficiente potencia de procesamiento.

La Business Intelligence normalmente proviene de simples fuentes internas de datos mientras que la Data Science puede extraer datos de docenas de fuentes, internas y externas.

La visualización del flujo de datos a través de un proceso o sistema ayuda a los administradores a ver los puntos problemáticos para que puedan tomar medidas.

Más allá de simplemente medir lo que su empresa hace, o ha hecho, un científico de datos es un papel estratégico que puede guiar a su empresa mediante la detección de las tendencias antes de que se desarrollen. Un científico de datos encontrará burbujas antes de estallar, y le ayudará a entender los factores sociales, geográficos, tecnológicos, económicos y otros que pueden afectar su negocio.

Y ahí es donde viven muchas empresas. Si los ingresos son importantes para su negocio, debe identificar los productos y actividades que afectan la generación de ingresos.

Del mismo modo, si el conocimiento de la marca es una prioridad, necesitarás una forma de medir eso: si el impacto social es su juego, piense en cómo medirlo. La ciencia de los datos es la forma de predecir los resultados antes de que sucedan.

¿Business Intelligence y Data Science son lo mismo?

Hay un abismo entre la inteligencia empresarial y la ciencia de los datos. La combinación del aprendizaje académico y las habilidades técnicas necesarias para ser un científico de datos tiene un precio, y una contratación de científicos de datos reales costará seis cifras, y tal vez hasta un 50% más que un analista de negocios o un analista de datos.

La ciencia de los datos es para todos. Solía ser algo de las grandes empresas pero dada la accesibilidad que los propietarios o incluso las personas tienen hoy en día, es realmente muy fácil empezar a utilizar el poder de la ciencia de datos para ayudar a tu negocio o crecer.

Personas con máster: los menos afectados por el paro

¿Has escuchado hablar de los Godínez? Este es un nombre (por no decir apodo) que se le da a todos esos empleados con salario mínimo que tienen horarios de 8:00 de la mañana hasta las 18:00 hrs. o más sin derecho a paga por horas extra.

Muchos de ellos terminaron en estos trabajos mal remunerados y sin motivación porque no tienen una especialización que el mundo exige en el presente que impera.

A diferencia de ellos, pasa lo contrario con personas con máster y lo vamos a explicar a continuación.

Los beneficios de tener un máster

Tener un máster no sólo significa tener los conocimientos, la información, las capacidades, las habilidades y las herramientas más desarrolladas para poder salir avante de un mundo lleno de competencias, sino que ser especializado significa que siempre estarás a la cabeza hasta de tus propias ambiciones, ya que a las personas con máster siempre les irá mejor en el terreno laboral y por ende en el terreno personal, ya que:

  • Empleo inmediato
  • Siempre ganarán más
  • Obtendrán siempre los puestos más cotizados
  • Liderarán los proyectos más envidiados
  • Serán los líderes de grupos
  • Serán merecedores de las retribuciones que su especialización implica
  • Serán fiel ejemplo de la generación que sigue
  • Tendrán más oportunidades de mejora
  • Tienen la gran ventaja de liderar un negocio propio
  • Tienen la oportunidad de jubilarse jóvenes
  • Podrán jubilarse con la mejor paga para seguir teniendo calidad de vida
  • Tendrán más tiempo libre

No cabe ningún tipo de duda que ser personas con máster es lo mejor que podemos ser en esta vida, ya que la especialización hace más preparados a los seres humanos y por ende, más capaces de ser la clave del éxito.

¿Qué valor tienen las personas con máster  en las empresas?

Sin duda alguna debemos de hablar del trato que, por ejemplo, nuestros egresados del máster en Data Science tienen en las empresas, el cual es mucho más cordial, profesional y personalizado, pues las grandes cabezas que lideran a las empresas, confían en personas con máster que egresan de la Universidad de Alcalá, pues saben el nivel de preparación e intelecto que tienen, y no es cuestión de exclusión pero no debemos de taparnos los ojos en el presente que impera, pues sabemos que siempre será mejor tratado una persona bien preparada.

Si tienen valor para la empresa pero están más expuestos a despidos, pues en los recortes son a los primeros que despiden.

Las personas con máster son mucho más beneficiadas en el mundo laboral debido a la aportación tan excepcional que hacen con respecto de los procesos laborales que se implementan en cada empresa y que llevan al éxito a las mismas, ya que estas personas son portadoras de talento para mover los hilos de cada uno de sus departamentos (en caso de tener subordinados) para que todos los procedimientos y tareas de cada uno sean clave de la fortuna que es tener a un egresado nuestro en la empresa.

 Anterior  Todos Siguiente