Loading...

Blog Data Science : 126 artículos encontrados

¿Por qué es útil hacer un Máster en Data Science en las mejores Universidades?

¿Hasta qué punto influye en nuestro futuro el centro en el que nos formamos? ¿Qué aspectos se ven más comprometidos? ¿Cuánto podemos beneficiarnos o perjudicarnos?

El Máster en Data Science se ofrece como respuesta a la necesidad cada vez mayor de profesionales que sean capaces de extraer conocimiento útil de las fuentes de información que apoye los objetivos del negocio.  

Rigor académico

Probablemente ya has adivinado cómo funcionan las cribas en la vida. Lo bueno conlleva un sacrificio, un tiempo: una inversión. Por ello, lo bueno se valora y, como no, se paga. El rigor académico no es más que un seguro que te garantiza que estás en las mejores manos posibles.

Un elenco de profesionales que han pisado por allá por donde nosotros pretendemos pisar algún día. Los mentores adecuados suelen conllevar a los objetivos adecuados y, por eso, es un factor realmente importante a la hora de elegir una u otra universidad.

Todo lo importante requiere una inversión sea de dinero, tiempo, esfuerzo… ¿Por qué no empezar apostando fuerte por nosotros mismos de la mano de los mejores?

Red de Contactos

Vivimos en un mundo conectado en el que, lo más importante, eres tú; nosotros. Todos. Las personas, sí, las mismas. Por eso la red de contactos es crucial a la hora de construir puentes invisibles pero sólidos entre las futuras empresas líderes del sector. Puentes necesarios con el paso del tiempo y que, de forjarlos bajo el cobijo del “rigor académico”, nos aseguramos una enorme funcionalidad de nuestra agenda.

Trabajar con los mejores, conocerles, saber sus inquietudes y sus debilidades. Toda esa información nos será mucho más que útil y, además, ganaremos muchos amigos por el camino.

¿Quién sabe por dónde te llevará el destino y si, quizá, terminas trabajando con alguna de esas personas años después? No desperdicies una buena oportunidad por falta de contactos: ¡búscalos! La competición sana nos lleva a aprender siempre: conoce a tus competidores y date a conocer ante ellos.

Un buen claustro docente

El claustro docente refleja la vinculación entre empresa y universidad, integrado por profesionales procedentes de ambos ámbitos capaces de guiarnos por el mejor camino posible. Un buen equipo docente es clave para ahorrar tiempo y esfuerzo dando palos de ciego. ¿Cómo saber qué docente necesitamos?

Toda criba es un difícil obstáculo que, de ser superado, nos destaca de una masa mayor y nos prepara para la vida. Un claustro selecto significa una oportunidad extra para aprender y alcanzar el éxito. Por eso el rigor académico, la red de contactos y un claustro docente selecto son cualidades propias de las mejores universidades pues precisamente por eso lo son.

No dudes en conseguir más información acerca del Máster en Data Science. Encontrarás un claustro docente capacitado y dispuesto a ayudarte en todo momento, una enorme red de contactos que te proporcionará aliados en tus primeros pasos y unos sólidos cimientos sobre los que forjar tu leyenda y, sin duda, el rigor académico está más que asegurado.

¡Da el paso e invierte en ti mismo!

5 Factores para elegir el mejor Máster en Data Science

Con el auge y la importancia y necesidad de estudiar un Máster para especializarse y obtener conocimientos y habilidades específicas que nos abran el camino al mundo empresarial, la competitividad hace de esta una forma perfecta para despuntar. Por ello es primordial encontrar el mejor Máster y el mejor centro de formación.

¿Qué factores nos pueden guiar a la hora de decidir el mejor Máster en Data Science? En este artículo os dejamos 5 Factores para elegir el mejor Máster en Data Science.

  1. Elije el mejor Centro de Formación en Data Science.

El centro es realmente importante pues de él parten el resto de factores que intervienen en la decisión. Es la clave y el centro del meollo. Por ello es importante que despejes pronto esta duda y, si ya sabes que lo que quieres es realizar el Máster en Data Science en la Universidad de Alcalá, no dudes en echar un vistazo a este enlace donde podrás conocer al profesorado, el programa y ver los requisitos de admisión. ¿A qué estás esperando?

  1. Los Objetivos.

Es muy importante saber hacia dónde vamos. Por eso, siempre que vayas a afrontar una decisión importante en la vida, debes tener muy claro cuál es el objetivo que quieres alcanzar. El tiempo es el valor más preciado que invertirás en toda tu vida y gestionarlo no es tarea fácil.

Enfrentarse a un máster en Data Science significa trabajar para conseguir la comprensión y aplicación de teoría financiera, comprender y saber usar las herramientas de gestión o potenciar el desempeño directivo de los participantes. Mejorar capacidad de toma de decisiones en cualquier ámbito. Una respuesta a las necesidades y exigencias que demanda el mercado, en busca de profesionales con talento como tú.

  1. El Programa (y los Módulos).

Si los objetivos son importantes, el programa y sus módulos serán lo que nos ofrecerá la posibilidad de establecer el tiempo. Conocer el programa de un máster es importante mucho antes siquiera de comenzar el mismo: nos servirá para vaticinar con mayor o menor acierto los tiempos.

Módulos (como Economía y Sistema Financiero Internacional, Métodos Computacionales, Data Science Corporativas, Mercados Financieros, Gestión de Cartera, Regulación Financiera…) son las herramientas que nos llevarán a conseguir los objetivos arriba mencionadas. En ellas tenemos la capacidad de expandir nuestros conocimientos y especializarnos para resultar eficientes en todo tipo de ámbitos.

  1. El Claustro Docente.

Portadores de experiencia y conocimientos, son las llaves que abrirán cada una de las herramientas arriba descritas. Capaces de potenciar la teoría ofreciendo experiencia en el sector y otorgando al recién llegado la seguridad de saber que no está remando solo.

El claustro de la UAH refleja la vinculación entre empresa y universidad, estando integrado por profesionales procedentes de ambos ámbitos. Por un lado profesionales del mundo financiero y bancario que ocupan puestos directivos en las principales empresas del sector, tanto nacionales como internacionales, y por otro lado expertos docentes de las principales universidades del país.

  1. Motivación y Disciplina.

El camino de las Data Science requiere profesionalidad y responsabilidad. La motivación es fundamental para recorrer un camino en el que nuestro mayor activo somos nosotros mismos. Se trata del comienzo de un camino que durará toda la vida y del que podremos emerger y alcanzar el lugar que deseamos en el mundo.

No dejes que los problemas a corto plazo puedan nublar tu visión a largo plazo. Trabaja por conseguir paliar los obstáculos que vayan apareciendo en el camino y tarde o temprano llegarás al lugar indicado. ¡No desfallezcas!

3 Consejos para hacer el mejor Máster en Data Science

En los últimos años se ha ido incrementando la importancia y la necesidad de estudiar un Máster para especializarse y obtener unos conocimientos y habilidades concretas que nos abran el camino al mundo empresarial. La competitividad y el exceso de gente con formación hacen que esta sea una buena forma de destacar y liderar el mercado, por ello es primordial encontrar el mejor Máster y ser aceptado para entrar en él.

Pero… ¿hay algo que podamos hacer para mejorar nuestras posibilidades a la hora de aplicar al Máster deseado? En este artículo os dejamos 3 Consejos para hacer el Mejor Máster en Data Science. ¡Esperamos que os ayuden!

  1. Destaca tus fortalezas.

Eche un vistazo al perfil de los estudiantes de las clases anteriores que han comenzado el programa que se está aplicando y luego toma una evaluación honesta de tus propias características y asegúrate de hacer hincapié en los que se alinean con los estudiantes anteriores.

Si tu experiencia excede el promedio de otros aceptados en el pasado necesitas destacar tu experiencia y describir cómo beneficiará el salón de clases. Obtén algunos buenos consejos sobre cómo ser aceptado para tu programa deseado en Data Science.

Si el programa hace hincapié en la experiencia internacional y has crecido en otro país, estudiaste en otro país o haces un montón de negocios en otro país es importante que resaltes estos atributos ya que eso ayuda a separarte de otros candidatos menos aptos.

  1. Involúcrate e identifica tus puntos flacos.

No es importante solo conocer nuestras fortalezas: nuestros puntos flacos están ahí no solo para ser escondidos. Procura medirte bien a ti mismo y reconocer en qué estás mejor y peor dotado. Cuando consigas identificar aquello en lo que eres peor, trata de encontrar la forma de pulir esa área sin olvidar las otras.

Nunca dejes tus puntos fuertes para compensar los débiles pero, al mismo tiempo, nunca descuides del todo tus puntos flacos solo por mejorar en lo que ya eres bueno. Trata de medir y crecer en todo para ser un candidato más equilibrado.

  1. ¡Empezar es la clave!

Parece sencillo pero es lo más complicado de todo. Es una decisión realmente importante pero, no por ello, debemos demorar mucho el proceso a no ser que tengamos buenas razones para hacerlo.

Una vez que inicies el proceso de solicitud, te sentirás en conexión con la universidad y será mucho menos probable que pongas excusas sobre por qué ahora no puede ser el momento adecuado para iniciar un programa de posgrado.

Acepta el hecho de que nunca habrá un momento perfecto para regresar a la escuela y comenzar la aplicación para tu programa e invertir en tu éxito profesional.

Una Maestría en Data Science tiene el potencial para cambiar tu vida. Los empleadores valoran a las personas que poseen avanzadas habilidades financieras que se pueden aprender por asistir a un grado de maestría de Data Science. Tener un dominio de las Data Science te hará mucho más valioso en el lugar de trabajo y te dará las habilidades necesarias para elevar su carrera.

Desde la Universidad de Alcalá te ayudamos en el proceso de toma de decisión del máster que más se adapte a tus intereses y ponemos a tu disposición todo el asesoramiento profesional necesario para responder a cualquier duda que puedas tener. Si ya sabes que lo que quieres es realizar el Máster en Data Science echa un vistazo a este enlace donde podrás ir viendo nuestro programa, conocer al profesorado y ver los requisitos de admisión. ¿A qué estás esperando?

 

¿Qué hacer tras finalizar tus estudios de Estadística?

Termina una época y da comienzo otra. Como todos los inicios son complicados y suelen ir precedidos de multitud de opciones y dudas, unas cuantas directrices podrán ser la mejor guía para orientar nuestros estudios de Estadística. ¿Qué hacer ahora?

Nos encontramos ante el umbral de una puerta que se nos ha abierto y muestra diferentes opciones. Lo primero es conocerlas todas.

  1. Buscar un puesto de trabajo adecuado a nuestra formación.

Hasta no hace mucho tiempo era la opción por excelencia y la más recurrida de las tres. Hablamos de la oportunidad de un sueldo fijo y pocas complicaciones pero, con la llegada de tormentas económicas, se convierte en una opción poco segura que nos deja en manos de factores externos a nosotros. ¿Qué clase de empresas pueden estar interesadas en tu perfil tras tus estudios en Estadística?

Las salidas profesionales no se limitan a sectores determinados:

Administraciones Públicas. Institutos oficiales de Estadística, proyección demográfica y tendencias sociales.

Ciencias de la vida. Sanidad, medicina, salud pública, industria farmacéutica, ensayos clínicos, medio ambiente, biología, agricultura, ciencias del mar.

Economía y finanzas. Ciencias actuariales, evaluación de riesgos y concesión de créditos, análisis bursátil, gestión de cartera de valores, investigación de mercados, análisis de la competencia.

Industria y servicios. Diseño de experimentos, calidad total, mejora de procesos y productos, logística, gestión de inventarios, planificación de la producción, gestión óptima de recursos.

Docencia e investigación. Enseñanza secundaria, docencia universitaria e investigación, formación continuada, investigación básica.

  1. Montar nuestra propia empresa.

Dar vida a semejante proyecto puede ser una tarea ardua y a largo plazo. Una opción inestable pero en la cual se basa nuestro sistema. La sociedad está formada por empresas y son estas las que crean riqueza e innovación allá donde están. Los puestos de trabajo dentro del estado sirven para gestionar en gran parte todos esos recursos pero, por supuesto, no crean nada. Una empresa puede ser un sueño o una pesadilla dependiendo de las posibilidades económicas, las necesidades o demanda de la misma, el grupo profesional en el que confiaremos y delegaremos, etc.

Por esto mismo debemos tener muy presente la posibilidad de formarnos de forma específica en aquellos ámbitos en los que pretendamos sumergirnos.

  1. Especializarse.

Una opción en alza y muy recomendable. Tras terminar tus estudios en Estadística tienes una gran opción a tu alcance: hacerte con un buen máster en Data Science. Te abrirá puertas hasta ahora cerradas y te otorgará unos conocimientos que te ayudarán a distanciar tu perfil del resto de competidores.

El Máster en Data Science es la respuesta a la necesidad de un nuevo profesional que es capaz de extraer conocimiento útil de la información en un contexto de proliferación de la producción de datos en las organizaciones y en la red en general.

Uno de cada dos empresarios toma como criba la especialización y eso reduce mucho las posibilidades de quienes no dispongan de un buen máster en el área en cuestión. Si quieres marcar la diferencia e invertir en tu futuro.

 

 

¿Estás preparado para realizar un Máster en Data Science?

La ciencia de datos es un campo interdisciplinario que involucra métodos científicos, procesos y sistemas para extraer conocimiento o un mejor entendimiento de datos en sus diferentes formas.

Perfil de los alumnos

Hablamos de profesionales con un perfil técnico (ingenierías TIC), cuantitativo (matemáticas, estadística) o de negocio (economía, empresa) que deseen afrontar el reto de Big Data como ventaja competitiva, especializándose en el análisis de datos.

El Master of Data Science es un título profesional para las personas que son apasionadas acerca de la extracción de conocimiento significativo de los datos para impulsar la toma de decisiones de negocios o la producción de la investigación. Desarrollará sus habilidades analíticas y técnicas para usar la ciencia de datos para guiar decisiones estratégicas en su área de experiencia. También ofrece la flexibilidad de adaptar el aprendizaje a sus intereses profesionales y personales.

  • Habilidades Sociales: Para poder comprender las respuestas sociales a nuestro producto y, por tanto, llegar a anticiparnos a las mismas. Comprender al cliente es básico para satisfacerle.
  • Habilidades de Negocio: son las que nos sirven de nexo entre nuestras habilidades sociales y las científicas. Nos llevan a determinar la línea entre lo que el cliente espera del producto y lo que el producto y las necesidades de producción del mismo.
  • Habilidades Científicas: aquellas que nos permiten, siguiendo el procedimiento científico, buscar respuestas a las preguntas planteadas.

Los datos son un activo vital para cualquier organización. Contiene conocimientos valiosos sobre áreas como el comportamiento del cliente, la inteligencia de mercado y el rendimiento operativo. Los científicos de datos construyen sistemas inteligentes para administrar, interpretar, comprender y derivar el conocimiento clave de grandes conjuntos de datos.

Si usted tiene una sólida formación matemática o cuantitativa, este grado desarrollará sus habilidades analíticas y técnicas en el uso de la ciencia de datos para guiar las decisiones estratégicas en su área de especialización.

Salidas profesionales de un Máster en Data Science

Estudiar Data Science es una apuesta segura ya que está considerado uno de los perfiles más buscados y las salidas profesionales son de lo más variadas. Como por ejemplo:

  • Data Scientist.
  • Arquitecto de datos de Business Intelligence.
  • Chief Data Officer (CDO).
  • Analista Digital.
  • Marketing Manager.
  • Social Media Strategist.
  • Business Analyst.

Si estás interesado en el mundo Data Science no dudes en visitar (ENLACE) para más información sin ningún compromiso. Como suele decirse: la información es poder. Además, la Universidad de Alcalá dispone de dos módulos de adaptación al máster sin ningún coste adicional después de realizar la Reserva de Plaza:

  • INTRODUCCIÓN A LA PROGRAMACIÓN: si nunca antes has programado o si ya hace tiempo que no lo haces y deseas refrescar conocimientos.
  • INTRODUCCIÓN A LA ESTADÍSTICA: para aquellos que deseen reforzar o recordar sus conocimientos de matemáticas y estadística estudiados anteriormente en la Carrera.

¿Has terminado la carrera y te interesa el mundo Data Science? ¿Has empezado a trabajar y buscas una posición más acorde a tus intereses? No desaproveches una oportunidad única en un sector en constante crecimiento.

Actitudes y Aptitudes de un Data Scientist

La mayoría de requisitos laborales o de formación son habilidades técnicas: matemáticas con énfasis en análisis estadístico, habilidades informáticas… pero un buen científico de datos también tiene un fuerte conjunto de habilidades puras. La ciencia de datos es más que matemática y tecnología: se trata de hacer que funcionen para las personas que lo necesitan.

Aquí os dejamos cinco habilidades puras que cada Data Scientist necesita:

  1. La capacidad de entender el negocio

Si el científico de datos está trabajando en el comercio minorista, seguros, energía o finanzas, el conocimiento del negocio y la industria son esenciales.

El análisis de datos sólo es útil en la medida en que refleje lo que la empresa necesita: eso si la empresa sabe lo que necesita. La habilidad para entender cuáles son las fortalezas y debilidades del negocio (así como la capacidad de enfocar hacia dónde se dirige) son habilidades críticas que el científico de datos debe dominar.

Un científico de datos necesita tener una comprensión firme de lo que hace que este negocio sea único, donde encaje dentro de la industria y lo que la empresa necesita para seguir siendo competitiva dentro del clima cambiante. Debe ser capaz de reconocer las tendencias en beneficio de su empresa.

  1. La capacidad de casar las necesidades del negocio con Know-How técnico

La capacidad de conectar personas y tecnología es crucial para un científico de datos.

El análisis de los datos no es nuevo pero la tecnología utilizada para analizar los datos está evolucionando rápidamente. Nuevas y mejores maneras de hacer las cosas están en el horizonte más cercano. Un científico de datos debe ser capaz de sacar su nariz de los datos el tiempo suficiente para evaluar las tecnologías disponibles para ellos. También deberían ser capaces de reconocer cuál de las tecnologías disponibles mejor se adapta al plan de negocios, ya sea la migración de datos a la nube, la actualización de las operaciones de mainframe o la adopción de nuevas plataformas.

  1. La capacidad de actuar como traductor entre trabajadores técnicos y los que no.

El científico de datos es literalmente el intermediario entre el departamento de TI y el lado de negocios de la empresa. Estos dos grupos de personas hablan diferentes idiomas. Un científico de datos con éxito será capaz de escuchar a los trabajadores de la producción y traducir esto en qué tecnologías puede satisfacer sus necesidades. Además, el científico de datos debe ser capaz de escuchar el lado del departamento de TI y ayudar a la parte de producción a entender cómo la tecnología puede ayudar, así como los límites que hay en las tecnologías ya disponibles.

  1. La capacidad de poner el análisis de datos en perspectiva.

A veces, los datos le dicen a la compañía lo que quiere oír. Otras veces, no. Un experto data scientist tendrá suficiente conocimiento diplomático (incluso político) para presentar los hechos tal como son y comunicar lo que ello significa de una manera que todo el mundo entienda. Idealmente, el científico de datos será capaz de influir en la empresa en la dirección correcta cuando los datos indiquen que las cosas necesitan un cambio.

  1. Un profundo sentido de la curiosidad más insaciable.

A diferencia de muchas otras carreras, la ciencia de los datos requiere innovación y creatividad para descubrir nuevas ideas. Los datos pueden decirnos mucho pero no necesariamente lo hacen de la forma esperada.

¿Estás pensando emprender este camino?

¿Por qué Estudiar un Máster en Data Science?

¿Ha notado el reciente aumento de los cursos de Data Science y puestos de trabajo? Echa un vistazo a tu alrededor y descubre por ti mismo cómo todo lo que nos rodea comienza a estar preparado para interactuar con nosotros, para ofrecernos información y para asimilar información de otros dispositivos.

Hoy en día, muchos dispositivos alrededor de nosotros están conectados a Internet. No se limita sólo al teléfono, reloj o tablet, incluso nuestro televisor o consola están actualmente conectados a Internet. ¡Una locura futurista no hace tanto tiempo!

Esto nos da la capacidad de analizar datos de estos dispositivos. Y ese proceso de recolección, análisis e interpretación de datos sería conocido como Data Science.

La Business Intelligence mira esos datos y habla de lo que ya sucedió. Es principalmente una función reactiva o sensible. Los científicos de datos toman esos datos y los usan para crear modelos que pueden usarse para predecir el futuro. Esto requiere habilidades avanzadas, herramientas que pueden manipular cantidades asombrosas de datos y a veces varios equipos que se ejecutan en clústeres o paralelos para proporcionar suficiente potencia de procesamiento.

La Business Intelligence normalmente proviene de simples fuentes internas de datos mientras que la Data Science puede extraer datos de docenas de fuentes, internas y externas.

La visualización del flujo de datos a través de un proceso o sistema ayuda a los administradores a ver los puntos problemáticos para que puedan tomar medidas.

Más allá de simplemente medir lo que su empresa hace, o ha hecho, un científico de datos es un papel estratégico que puede guiar a su empresa mediante la detección de las tendencias antes de que se desarrollen. Un científico de datos encontrará burbujas antes de estallar, y le ayudará a entender los factores sociales, geográficos, tecnológicos, económicos y otros que pueden afectar su negocio.

Y ahí es donde viven muchas empresas. Si los ingresos son importantes para su negocio, debe identificar los productos y actividades que afectan la generación de ingresos.

Del mismo modo, si el conocimiento de la marca es una prioridad, necesitarás una forma de medir eso: si el impacto social es su juego, piense en cómo medirlo. La ciencia de los datos es la forma de predecir los resultados antes de que sucedan.

¿Business Intelligence y Data Science son lo mismo?

Hay un abismo entre la inteligencia empresarial y la ciencia de los datos. La combinación del aprendizaje académico y las habilidades técnicas necesarias para ser un científico de datos tiene un precio, y una contratación de científicos de datos reales costará seis cifras, y tal vez hasta un 50% más que un analista de negocios o un analista de datos.

La ciencia de los datos es para todos. Solía ser algo de las grandes empresas pero dada la accesibilidad que los propietarios o incluso las personas tienen hoy en día, es realmente muy fácil empezar a utilizar el poder de la ciencia de datos para ayudar a tu negocio o crecer.

Personas con máster: los menos afectados por el paro

¿Has escuchado hablar de los Godínez? Este es un nombre (por no decir apodo) que se le da a todos esos empleados con salario mínimo que tienen horarios de 8:00 de la mañana hasta las 18:00 hrs. o más sin derecho a paga por horas extra.

Muchos de ellos terminaron en estos trabajos mal remunerados y sin motivación porque no tienen una especialización que el mundo exige en el presente que impera.

A diferencia de ellos, pasa lo contrario con personas con máster y lo vamos a explicar a continuación.

Los beneficios de tener un máster

Tener un máster no sólo significa tener los conocimientos, la información, las capacidades, las habilidades y las herramientas más desarrolladas para poder salir avante de un mundo lleno de competencias, sino que ser especializado significa que siempre estarás a la cabeza hasta de tus propias ambiciones, ya que a las personas con máster siempre les irá mejor en el terreno laboral y por ende en el terreno personal, ya que:

  • Empleo inmediato
  • Siempre ganarán más
  • Obtendrán siempre los puestos más cotizados
  • Liderarán los proyectos más envidiados
  • Serán los líderes de grupos
  • Serán merecedores de las retribuciones que su especialización implica
  • Serán fiel ejemplo de la generación que sigue
  • Tendrán más oportunidades de mejora
  • Tienen la gran ventaja de liderar un negocio propio
  • Tienen la oportunidad de jubilarse jóvenes
  • Podrán jubilarse con la mejor paga para seguir teniendo calidad de vida
  • Tendrán más tiempo libre

No cabe ningún tipo de duda que ser personas con máster es lo mejor que podemos ser en esta vida, ya que la especialización hace más preparados a los seres humanos y por ende, más capaces de ser la clave del éxito.

¿Qué valor tienen las personas con máster  en las empresas?

Sin duda alguna debemos de hablar del trato que, por ejemplo, nuestros egresados del máster en Data Science tienen en las empresas, el cual es mucho más cordial, profesional y personalizado, pues las grandes cabezas que lideran a las empresas, confían en personas con máster que egresan de la Universidad de Alcalá, pues saben el nivel de preparación e intelecto que tienen, y no es cuestión de exclusión pero no debemos de taparnos los ojos en el presente que impera, pues sabemos que siempre será mejor tratado una persona bien preparada.

Si tienen valor para la empresa pero están más expuestos a despidos, pues en los recortes son a los primeros que despiden.

Las personas con máster son mucho más beneficiadas en el mundo laboral debido a la aportación tan excepcional que hacen con respecto de los procesos laborales que se implementan en cada empresa y que llevan al éxito a las mismas, ya que estas personas son portadoras de talento para mover los hilos de cada uno de sus departamentos (en caso de tener subordinados) para que todos los procedimientos y tareas de cada uno sean clave de la fortuna que es tener a un egresado nuestro en la empresa.

¿Por qué las empresas reclutan en las Business Schools?

Actualmente, las personas que tienen el deseo de realizar un Máster, saben que este se ha convertido en una de las mayores posibilidades en el mercado, desde una perspectiva de acceso a empleos mejor remunerados, mejores oportunidades y mejores prácticas.

Al momento de tomar una decisión de tipo profesional, la gran mayoría consideran estos aspectos cuando se trata de hacer un especialización o postgrado. Si bien existen muchos otros factores que influyen en la toma de estas decisiones, como por ejemplo la economía, la relevancia de la Universidad o Institución, la metodología, el claustro docente entre otros, por lo general, la posibilidad de una mejor cuota de mercado es lo que empuja  más.

¿Por qué las empresas reclutan en las Business Schools?

Una de las preguntas que más se realizan actualmente está relacionada precisamente con el hecho de que es de interés público el hecho de que las empresas están reclutando la mayoría de su talento humano dentro de las Business Schools.

Los análisis con respecto a esta situación, demuestran que el éxito de esta acción recae siempre en el hecho de apostar por el Máster de calidad, unas buenas prácticas y un talento humano excelente.

Los reclutadores de las empresas tienen una plena confianza dentro del desarrollo profesional y humano que los estudiantes adquieren en las escuelas del país, de esta forma es que buscan aquellos que más se destacan de estas instituciones, como una fuente confiable y directa.

¿Por qué las empresas reclutan en las Business Schools? Aspectos decisivos.

  • Los resultados: estos son los que alcanzan los estudiantes dentro de su desempeño, y son además los que permiten que puedan tener un acceso más sencillo para insertarse dentro del entorno laboral.
  • Enfoque práctico: otro aspecto o característica que buscan para reclutar en las Business School, se debe a que estas  intentan que los alumnos aprendan más con la práctica. Si bien la teoría es importante, saber enfrentarse a los desafíos diarios es mejor y más importante.
  • Conexiones de prácticas: las Business Schools se enfocan además en permitir que todos sus alumnos tengan la posibilidad de conectar con prácticas en las mejores empresas, con la finalidad de aprender y poner en funcionamiento las herramientas y conocimientos adquiridos.
  • Uso del mentoring: actualmente el mentoring es uno de los aspectos más buscados por estudiantes, profesionales y empresas con el fin de sacar lo mejor de cada persona. Las Business Schools emplean el mentoring como una forma de identificación de fortalezas y debilidades, permite potenciar las virtudes y habilidades y a mejorar aquellas en las que existe más debilidad, de esta forma también se traza un mapa de ruta para identificar mejores puestos de trabajo que se adaptan al perfil de cada individuo.
  • Red de profesionales: las Business Schools permiten entonces que sea posible la creación de redes profesionales que son perfectas para encontrar mejores oportunidades, no ayudar a las empresas a conectar con otros, haciendo que los estudiantes de estas instituciones, sean los más deseados.

¿Cuáles son los principales Blog sobre Data Science?

Sitios web enfocados en hablar sobre Big Data así como Data Science se pueden encontrar en una buena cantidad. Pero, cuáles son principales Blog sobre Data Science que deberías visitar.

Si quieres conocer algunos de estos blogs a continuación te presentaremos algunas buenas opciones a visitar.

Los Blogs

Los blogs se han convertido en una forma moderna de expresión y opinión en Internet. La palabra blog proviene de la unión de las palabras web y log, que en español se traduce como bitácora o bitácora digital. Realmente, un blog es una página de internet que se actualiza periódicamente con material nuevo, publicado por una persona, que expresan opiniones, pensamientos o conocimiento, como es el caso de los blog de los que hablaremos más adelante.

En muchas ocasiones, cuando queremos buscar información, en este caso sobre data science, nos aparecen múltiples páginas web de todo tipo. Los blogs sobre este tema suelen ser una buena opción ya que normalmente están redactado por personas expertas en la materia. Incluso, en algunos casos, son empresas o universidades las que proporcionan la información sobre data science u otros temas.

Sin embargo, debido a la cantidad de información que se mueve por la red hoy en día, contrastar la información que encontramos es fundamental, y saber cuáles son los blogs 100% fiables es importante de cara al uso que se va a hacer de esa información o aunque sea únicamente para el saber personal, es importante documentarse con información de calidad.

Para que puedas elegir los mejores blogs en data science y encontrar la información de calidad que buscas, hemos investigado para ti cuáles son los mejores blogs en data science y hemos hecho una lista con ellos para que puedas utilizarlos con toda la confianza del mundo. ¡No te lo pierdas!

Blogs recomendados sobre Data Science

  • Machinelearningparatodos.com es un blog que puedes visitar para aprender conceptos sobre ciencia de datos, machine learning y big data. Es el blog de Álvaro Gonzalo de Alba, data scientist con años de experiencia. Además de conceptos relativos a la ciencia de datos, también da su opinión sobre el sector, recomienda material de estudio, másteres, etc.  Hay artículos más técnicos como «Tratamiento de clases desbalanceadas» y otros más de opinión o análisis del sector como «¿A qué se dedican los científicos, ingenieros y arquitectos de datos?».
  • El primer sitio que debemos recomendar es el meetup.com. Este es el sitio web de la primera Comunidad de Data Science de España, la Data Science Spain Expert Network. Esta comunidad, conocida también como Data Science Spain o DSS, se ha presentado como una comunidad enfocada en el Data Scientists y que se encuentra disponible tanto para estudiantes como para profesionales de Data Science y tecnologías relacionadas. Este sitio, si bien no es un blog como tal si hace parte de este listado de los principales Blog sobre Data Science ya que en él se presentan contenidos muy buenos y de interés, tanto en español como en inglés. Debes tener muy en cuenta que este es un sitio de encuentro, discusión e intercambio así que no solo podrás encontrar contenidos que te interesen sino que además podrás compartir en ella, solicitar ayuda o brindarla.
  • Ahora, debemos hablar de u-tad.com. Este es el sitio de unos expertos en Data Scientist y lo mejor es que en su sección de noticias se pueden encontrar artículos que llaman mucho la atención. Por ejemplo, “Data Scientist: calidad de vida para la profesión del futuro” o “Personal branding: crea tu propia marca en Internet”.
  • soydata.net también es otro sitio de interés que podrías visitar y es que en él podrás encontrar contenidos relacionados de manera directa con el Data Science, pero también podrás encontrar otro tipo de contenidos. Algunos de los artículos allí incluidos son “SPARQL, un nuevo Rey de la Ciencia de Datos”, “Tendencias Data Science para este año” o “El mayor reto en Machine Learning de los próximos años”.
  • El blog de bigdatauniversity.com no es un blog en español sino en inglés que vale la pena conocer y es que en él podrás encontrar muchas noticias y novedades que pueden resultarte de gran utilidad. En este sitio es común la publicación de “Esta semana en la Data Science” la cual nos lleva a una gran cantidad de noticias relacionadas.  Por ejemplo, recientemente se han publicado artículos que tratan sobre “Cómo ejecutar un exitoso meetup de Data Science”, “La máquina de aprendizaje para las tareas diarias”, “las Mejores preguntas para Data Science”, entre muchos otros.

Así mismo, has de saber que dentro de estas publicaciones el sitio también da a conocer los eventos próximos sobre Data Science que están por realizarse.

Otros sitios

Además de estos sitios o principales Blog sobre Data Science debemos nombrar otras páginas más que te pueden interesar. Estos sitios son www.blog-geographica.com en el cual manejan una buena cantidad de información sobre Data Science y Big Data. Por ejemplo, allí podrás encontrar títulos como “las diferencias entre loT y M2M” así “Geolocalización como elemento clave de las Smart Cities” o “Diferencias entre Data Science y Bog Data”.

Finalmente, te invitamos a conocer el sitio 101.datascience.community.

Retorno de la inversión de un máster

Una de las cosas que mas se disfruta de un máster es que tenemos la capacidad de que exista un retorno de inversión de máster, en este caso no estamos hablando de dinero, sino de todo lo que conlleva una vez que has finalizado tu formación con nosotros.

Al final de esta información te darás cuenta de que la inversión vale mucho la pena y que es equiparable a lo que te mereces allá afuera en el mundo laboral que ya te está esperando y en el que necesitas estar preparado para responder a las exigencias actuales del día a día.

Hablemos del retorno de inversión de máster ¿a qué nos referimos?

Cuando hablamos del retorno de inversión de máster no nos referimos a la parte económica que no damos, sino que esto es por medio de los incentivos que las empresas te dan por la excelencia de tu desempeño en tu trabajo, aquellas remuneraciones con base en la ley y los bonos extra que recibes por un trabajo bien realizado además del salario que implica tu puesto, pues cabe mencionar que los egresados del máster tienen los mejores puestos, y tanto es así que te lo decimos porque nos sentimos capaces de llevarte hasta donde te lo mereces porque contamos con lo necesario para que esto suceda.

Y es más, no sólo hay un retorno de inversión de máster sino que también esto se multiplica mes con mes debido a que estarás trabajando en el mejor puesto de la mejor empresa que has querido, pues tienes todo lo que se necesita para ello y mucho más, s por eso que la inversión que realizas por nuestros máster, es mínima a comparación de todo lo que estás a punto de disfrutar de tu preparación en el terreno profesional.

Vale más un retorno de inversión de máster

No existen casos que nos lleven al retorno de inversión de máster de manera económica, pero si lo es a manera de experiencia, misma que te va llevando a incluirte como una persona capaz de ser potenciadora, emprendedora y líder de su especialización para poder disfrutar de los grandes frutos que has cosechado a lo largo de tu vida estudiantil.

Esto es algo que nuestros egresados saben muy bien y que agradecen, ya que contamos con una amplia red de egresados que están más allá de aquellos puesto base, sino en los puestos clave.

Recuerda, nunca será lo mismo ocupar un puesto base a un puesto clave, en el segundo eres un líder capaz de estar y de llevar a la empresa hacia donde mejor convenga a sus intereses.

Estamos hablando del retorno de inversión de máster que vale más que cualquier monto económico, sino que es algo que se vive día a día: en las gratificaciones, en las felicitaciones, en los bonos, en os salarios, en las jubilaciones, mes con mes, año con año y todo esto siempre por una eternidad.

¿Qué se necesita saber para ser un Data Scientist?

Ser un Data Scientist no es una tarea sencilla y es que para serlo no solo requiere de ciertas habilidades, sino que se requiere tener amplios conocimientos en diversas áreas.

¿Cuáles son estos conocimientos?

Antes de empezar

Si se quiere ser un experto en Data Science, resulta esencial que antes de comenzar los estudios para ello se tengan unos conocimientos base relacionados con dicho ámbito. Dentro de estos conocimientos debemos hablar del manejo de lenguajes diferentes para el data Hacking. Así mismo, se requiere tener conocimientos en Machine Learning, en estadística, big data y en Deep Learning. A su vez, se deberían tener conocimientos en programación y estadísticas con Python.

Con estas bases establecidas, es hora de prepararte para ser un Data Scientist y es que al realizar un programa o Máster en Data Science tendrás los conocimientos fundamentales para poder continuar. Además, gracias a su magnífico programa y claustro docente podrás convertirte en todo un experto y profesional en el sector, algo muy valorado por las empresas.

Programa para ser un Data Scientist

Ya que ser un Data Scientist requiere que el profesional pueda extraer valor y conocimiento de los datos y pueda presentarlos a los líderes empresariales junto con recomendaciones, es fundamental que a lo largo del programa se den los conocimientos necesarios para ello.

Entonces ¿Qué se ha de enseñar, buscar o aprender con el programa?

  • Para comenzar, lo ideal es que se maneje una buena introducción al business case así como también se ha de hablar de cómo extraer valor de ello. Se han de presentar los indicadores principales, los factores medibles en el proceso de analítica así como los estudios de Data Science, échandole un ojo a al toolset de este perfil.
  • Así mismo, el programa ha de presentar las herramientas de análisis de Data Scientist y aquellas para las tareas de preparación de datos, transformación, y limpieza. Entonces, se han de conocer los entornos con R, con Python así como los fundamentos para la presentación de los datos.
  • Por otro lado, para ser un Data Scientist se requiere aprender las técnicas de análisis, considerando la programación estadística como un punto clave. También, se han de presentar técnicas de análisis avanzadas, incluyendo el análisis de redes sociales así como el procesamiento de lenguaje natural.
  • No podemos olvidar en este proceso de formación la presentación de los modelos de procesamientos de datos paralelos, donde son esenciales Hadoop y otras plataformas como Apache Spark. Además, se ha de incorporar el uso, en cloud, mediante APIs y el procesamiento de streams.
  • La gestión de datos ha de integrar variedad de temáticas, siendo dentro de ellas necesarias la de la utilización de herramientas de visualización dinámicas. Es importante manejar temas clave como la web de los datos o las bases de datos no convencionales.
  • También, es esencial manejar el Business Analytics en el cual destacan aspectos como la privacidad, la ética, la legalidad, las infraestructuras Big Data y los equipos de datos.
  • Por otro lado, no puede quedar fuera de este estudio la profundización en técnicas analíticas avanzadas, incluyendo los modelos de aprendizaje automático avanzado.
  • Finalmente, el programa tiene integrados importantes temas de algoritmos paralelizados, los modelos de grafo escalables así como APIs, etc. Además, tiene integrados  elementos y actividades para la comunicación y presentación de los análisis de datos.
 Anterior  Todos Siguiente